
1

Optimized Sparse Sampling Lattices
Peter Vouras, Mohamed Kashef (Hany), Sudantha Perera, Carnot Nogueira, Richard Candell, Kate A. Remley

Abstract—Sparse sampling approaches have been widely
studied to achieve less complex measurement systems while
maintaining detection performance. In this paper, we derive
a new gradient implementation of an alternating projections
algorithm that determines the optimal locations for spatial
samples in a sparse array lattice. In a second phase of the
sparse array design, an adaptive beamformer is used to further
reduce the overall sidelobe level. Simulated results show a
significant reduction in grating lobes. The approach described
herein is useful in wideband synthetic aperture channel sounding
applications where reducing the spatial sample set has the
potential to significantly reduce data acquisition time.

I. INTRODUCTION

Sparse sampling approaches have been an active area of
research for many years in the phased array community. The
allure of sparse sampling is that if detection and resolution
performance can be maintained, then a sparse phased array
will be cheaper and require less hardware complexity. In
the synthetic aperture channel sounding community, sparse
spatial sampling lattices are attractive because they can reduce
the necessary data acquisition time. This paper derives a
new gradient implementation of an alternating projections
algorithm that searches for the optimal locations of samples
in a sparse spatial lattice. In a second phase of the design,
an adaptive beamformer is used to further reduce the overall
sidelobe level in the beamformed output of the sparse array.

Other approaches investigated in the literature for sparse
array design include simulated annealing and genetic
algorithms. Simulated annealing is a stochastic optimization
method analogous to the manner in which a metal cools
and anneals [1]. The algorithm seeks to minimize a sparse
array energy function which is set proportional to the peak
sidelobe level. At each algorithm iteration, the location of
array elements is randomized by moving one element at
a time. The peak sidelobe level of the perturbed array is
found and compared to the best solution of the last iteration.
The new solution is accepted if it lowers the peak sidelobe
level, or it may also be accepted with some finite probability
if it raises the sidelobe level. In this way, the algorithm
is less likely to be trapped in a local minimum. As the
cost function is progressively minimized, the probability of
accepting an inferior solution is reduced and ultimately the
algorithm converges to a solution that may be close to
optimal, provided the optimization parameters are well chosen.

P. V. is with the United States Department of Defense, Washington, DC,
20375 USA, e-mail: synthetic aperture twg@ieee.org.

M. K. and R. C. are with the National Institute of Standards and
Technology (NIST), Gaithersburg, MD, 20899 USA e-mail: mohamed.kashef,
richard.candell@nist.gov.

S. P., C. N. and K. A. R. are with the National Institute of Standards
and Technology (NIST), Boulder, CO, 80303 USA e-mail: sudantha.perera,
carnot.nogueira, kate.remley@nist.gov.

Simulated annealing has been applied to the optimization of
sparse lattices in [2]–[5]

Genetic algorithms iteratively operate on the individuals
in a population [6], [7]. Each member of the population
represents a potential solution to the optimization problem.
Initially, the population is randomly generated. The individuals
are evaluated by means of a fitness function and then
either retained or replaced. New individuals are created
through either a cross-over operation or a mutation. Genetic
optimization has been applied to the layout of sparse arrays
in [8]–[10].

II. PART A. SPARSE ARRAY ELEMENT OPTIMIZATION

The proposed approach for optimizing the spatial sample
locations in a sparse lattice is to use a novel gradient
implementation of alternating projections to minimize the
mean squared error (MSE) between a beamspace vector
of sidelobe levels taken from a filled array pattern and
a corresponding beamspace vector of sparse array sidelobe
levels as in,

min
x,y

∥b(u,v)−A(x,y)s(x,y)∥22. (1)

The M×1 vector s(x,y) corresponds to the output of a
planar sparse array of size M = M1M2 with M < N . The
components of the x and y position vectors correspond to the
x and y coordinates of each array element,

x = [x0, x1 . . . xM1−1]
T
, (2)

y = [y0, y1 . . . yM2−1]
T
.

The beamspace vector b(u,v) contains complex amplitudes
corresponding to the beampattern of an N -element filled array
sampled over a regular grid (u,v) of L angles in the sidelobe
region,

b(u,v) = [b(u0, v0) b(u1, v1) . . . b(uL−1, vL−1)]
T
, (3)

u = [u0, u1 . . . uL−1]
T
,

v = [v0, v1 . . . vL−1]
T
.

The sine space coordinates (u, v) correspond to

u = sin θ cosϕ, (4)
v = sin θ sinϕ

where θ and ϕ are spherical angle coordinates. The
components of the beamspace vector b(u,v) correspond to
L values of the beampattern b(u, v) for a planar filled array
with N = N1N2 elements given by,

b(ul, vl) =

N1−1∑
k=0

N2−1∑
m=0

e−j 2π
λ (xkul+ymvl) (5)

2

for 0 ≤ l ≤ L− 1. Here xk and ym denote the x and y
coordinates of the (k,m)th filled-array element.

The rows of the L×M matrix A(x,y) with L > M
correspond to the sparse array steering vectors a(ul, vl),

A(x,y) =

a(u0, v0)

T

a(u1, v1)
T

...
a(uL−1, vL−1)

T

 (6)

for 0 ≤ l ≤ L− 1. The sparse array steering vector a(ul, vl)
in the direction (ul, vl) is the M × 1 vector given by,

[a(ul, vl)]km =
[
e−j 2π

λ (xkul+ymvl)
]T

(7)

where 0≤k≤M1 − 1 and 0≤m≤M2 − 1.
The kth column of the matrix A(x,y) is the electrical

angle vector corresponding to the kth array element. The
lth component of an electrical angle vector is the phase
shift corresponding to the lth beam-steering direction (ul, vl).
Using electrical angle vectors ckm, the matrix A(x,y) can be
rewritten as

A(x,y) =
[
c00 | c01 | . . . | cM1−1,M2−1

]
(8)

where

ckm =

e−j 2π

λ (xku0+ymv0)

e−j 2π
λ (xku1+ymv1)

...

e−j 2π
λ (xkuL−1+ymvL−1)

 . (9)

Proceeding by fixing x,y and minimizing (1) with respect
to s(x,y) yields the least-squares estimate

ŝ(x,y) =
[
A(x,y)HA(x,y)

]−1
A(x,y)Hb(u,v). (10)

Substituting ŝ(u,v) into (1) yields the minimization problem

min
x,y

∥b(u,v)−PA(x,y)b(u,v)∥22 (11)

with

PA(x,y) = A(x,y)
[
A(x,y)HA(x,y)

]−1
A(x,y)H (12)

= A(x,y)A(x,y)†

where † denotes the pseudoinverse. The matrix
PA(x,y) is the projection matrix onto the range space
of A(x,y). Thus, the estimates of the coordinates
(x0, y0), (x0, y1), . . . , (xM1−1, yM2−1) can be obtained
by maximizing the function

max
x,y

J(x,y) = ∥PA(x,y)b(u,v)∥22. (13)

Using the property of the trace operator that
cHDc = tr[DccH] and the idempotent property of the
orthogonal projection matrix PA(x,y), equation (12) can be
rewritten as

max
x,y

J(x,y) = tr[PA(x,y)R̂] (14)

where the beamspace covariance matrix is

R̂ = b(u,v)b(u,v)H . (15)

A geometric interpretation of (14) is that the estimates
x̂, ŷ are obtained by searching over the array manifold
A(x,y) for the M sparse-array electrical-angle vectors that
form an M -dimensional subspace closest to the filled-array
beamspace vector b(u,v). Here ‘closeness’ is measured by the
Frobenius norm of the projection of the filled-array beamspace
vector onto the sparse array electrical angle vectors. The
function J(x,y) is multidimensional and highly nonlinear
which renders it difficult to solve directly. The next section
describes a greedy optimization approach that transforms the
original problem into an iterative sequence of two-dimensional
optimization programs.

A. Alternating Projections Algorithm

The alternating projections (AP) algorithm maximizes the
cost function J(x,y) with respect to one pair of parameters
(xk, yk) while holding the other parameters fixed. Since
iterations of the AP algorithm perform a maximization at every
step, the value of J(x,y) can never decrease, so the algorithm
is guaranteed to converge to a local maximum. Depending on
the initial conditions, the local maximum may or may not
coincide with the global maximum. Since J(x,y) will, in
general, have many local maxima, proper initialization is vital
for the AP algorithm to converge to the global solution.

At the core of the AP algorithm is a projection matrix
decomposition described as follows. Consider two arbitrary
matrices E and F with the same number of rows. The
projection matrix P[E,F] onto the column space of the
augmented matrix [E,F] is equal to

P[E,F] = P[E,FE] (16)

where
FE = P⊥

EF = (I−PE)F (17)

is the orthogonal complement of the projection of the vector
space spanned by the columns of F onto the range space of
E. The column space of FE is orthogonal to the column space
of E and their direct sum spans the column space of [E,F]
so it follows that

P[E,F] = PE +PFE
. (18)

Applying (16) and (18) to PA(x,y) yields

PA(x,y) = P[A(x̂k,ŷk),c(xk,yk)] (19)
= PA(x̂k,ŷk) +Pc(xk,yk)A(x̂k,ŷk)

where the (M − 1)× 1 vectors x̂k and ŷk are

x̂k = [x0, x1, . . . , xk−1, xk+1, . . . , xM−1]
T (20)

ŷk = [y0, y1, . . . , yk−1, yk+1, . . . , yM−1]
T

and the L× (M − 1) matrix A(x̂k, ŷk) is

A(x̂k, ŷm) = (21)
[c(x0, y0), ..., c(xk−1, ym−1), c(xk+1, ym+1), ...] .

3

Rewriting the maximization problem in (13) to search
around the kth array element location (xk, yk) at the (p+ 1)st
algorithm iteration while holding all other array elements fixed
yields

x
(p+1)
k , y

(p+1)
k = arg max

xk,yk

tr[P
[A(x̂

(p)
k ,ŷ

(p)
k),c(xk,yk)]

R̂].

(22)
Equation (22) states that to obtain the coordinate estimates
x
(l+1)
k , y

(l+1)
k for the kth array element at the (l + 1)st

algorithm iteration, the parameters x̂
(l)
k , ŷ

(l)
k are held fixed

while the parameters xk, yk are free to vary. Applying the
matrix decomposition in (18) to (22) and ignoring the first
term in the summation since it is constant yields the equivalent
maximization problem

x
(l+1)
k , y

(l+1)
k = arg max

xk,yk

tr[Pc(xk,yk)
A(x̂

(l)
k

,ŷ
(l)
k

)
R̂]. (23)

Using (17) and (12), the vector c(xk, yk)A(x̂
(l)
k ,ŷ

(l)
k)

can be
written as

c(xk, yk)A(x̂
(l)
k ,ŷ

(l)
k)

=
[
I−P

A(x̂
(l)
k ,ŷ

(l)
k)

]
c(xk, yk) (24)

=

[
I−A(x̂

(l)
k , ŷ

(l)
k)A(x̂

(l)
k , ŷ

(l)
k)

†
]
c(xk, yk).

Equation (24) shows that the vector c(xk, yk)A(x̂
(l)
k ,ŷ

(l)
k)

is
orthogonal to the projection of c(xk, yk) onto the column
space of A(x̂

(l)
k , ŷ

(l)
k). Also by (12),

Pc(xk,yk)
A(x̂

(l)
k

,ŷ
(l)
k

)
= (25)

=

[
c(xk, yk)A(x̂

(l)
k ,ŷ

(l)
k)

] [
c(xk, yk)A(x̂

(l)
k ,ŷ

(l)
k)

]H
[
c(xk, yk)A(x̂

(l)
k ,ŷ

(l)
k)

]H [
c(xk, yk)A(x̂

(l)
k ,ŷ

(l)
k)

] .
Define the unit norm vector

d
(l)
k ≡ d(xk, yk; x̂

(l)
k , ŷ

(l)
k) =

c(xk, yk)A(x̂
(l)
k ,ŷ

(l)
k)

∥c(xk, yk)A(x̂
(l)
k ,ŷ

(l)
k)

∥2
(26)

and substitute (25) into (23). By applying properties of the
trace operator including tr(AB) = tr(BA), the optimization
problem in equation (23) becomes

x
(l+1)
k , y

(l+1)
k = arg max

xk,yk

d
(l)H

k R̂d
(l)
k (27)

≡ arg max
xk,yk

J l(xk, yk).

The entire AP algorithm can now be summarized as follows,

Algorithm 1 Sparse Array Alternating Projections Algorithm

Require: Initial values x
(0)
0 , . . . , x

(0)
M−1 and y

(0)
0 , . . . , y

(0)
M−1

1: Set algorithm iteration l = 1

2: Until
∣∣∣x(l+1)

k − x
(l)
k

∣∣∣2 < ϵ and
∣∣∣y(l+1)

k − y
(l)
k

∣∣∣2 < ϵ for all
k = 0, . . . ,M − 1, compute the location for the kth array
element by solving x

(l+1)
k , y

(l+1)
k = arg max

xk,yk

J l(xk, yk)

The primary contribution of this paper described in the
next section is a gradient-based method to maximize the cost
function J l(xk, yk) at each iteration.

III. GRADIENT-BASED IMPLEMENTATION OF
ALTERNATING PROJECTIONS ALGORITHM

A. Derivation of Gradient Vector

In this section, an analytical expression for the gradient
vector of the (l + 1)st cost function specified in (27) is derived.
To start, we rewrite the cost function as

J l(xk, yk) = (28)

c(xk, yk)
H
[
I−P

A(x̂
(l)
k ,ŷ

(l)
k)

]H
R̂

[
I−P

A(x̂
(l)
k ,ŷ

(l)
k)

]
c(xk, yk)

c(xk, yk)H
[
I−P

A(x̂
(l)
k ,ŷ

(l)
k)

]
c(xk, yk)

≡ c(xk, yk)
HWc(xk, yk)

c(xk, yk)HQc(xk, yk)

by substituting (24) into (27) and note that
the idempotent and self-adjoint properties
of orthogonal projection matrices imply that[
I−P

A(x̂
(l)
k ,ŷ

(l)
k)

]H [
I−P

A(x̂
(l)
k ,ŷ

(l)
k)

]
=

[
I−P

A(x̂
(l)
k ,ŷ

(l)
k)

]
.

The electrical angle vector c(xk, yk) defined in (9) can
be written as the Kronecker product of two electrical angle
vectors,

c(xk, yk) = (29)[
e−j 2π

λ xkus

∣∣∣ 0≤s≤L1 − 1
]T

⊗
[
e−j 2π

λ ykvr
∣∣∣ 0≤r≤L2 − 1

]T
.

where L1L2 = L. Hereafter, to simplify notation, the subscript
k denoting the kth array element will be dropped from the
coordinates xk, yk. Next, we consider a change in element
location corresponding to (δx, δy). Then,

c(x+ δx, y + δy) = (30)[
e−j 2π

λ us(x+δx)
∣∣∣ 0≤s≤L1 − 1

]T
⊗[

e−j 2π
λ vr(y+δy)

∣∣∣ 0≤r≤L2 − 1
]T

.

Define the diagonal matrices,

∆x = δx

2π
λ u0 0 0 0 0

0 2π
λ u1 0 0 0

0 0 2π
λ u2 0 0

...
...

...
. . .

...
0 0 0 0 2π

λ uL1−1

(31)

≡ δxTu

and

∆y = δy

2π
λ v0 0 0 0 0

0 2π
λ v1 0 0 0

0 0 2π
λ v2 0 0

...
...

...
. . .

...
0 0 0 0 2π

λ vL2−1

(32)

≡ δyTv.

Then using the identity

∆x⊕∆y = ∆x⊗ I+ I⊗∆y (33)

4

and the properties of the matrix exponential, the perturbed
electrical angle vector c(x+ δx, y + δy) can be written as

c(x+ δx, y + δy) = e−j∆x ⊗ e−j∆yc(x, y) (34)

= e−j(∆x⊕∆y)c(x, y).

At this point it is useful to clarify the overarching strategy
for computing the gradient vector of the cost function J(x, y)
in (27); where the superscript iteration index l has been
dropped for simplicity. A related approach is also described in
[11]. The desired gradient vector of J(x, y) to be computed is
defined as ∇J = [∂J/∂x ∂J/∂y]

T . In terms of numerator and
denominator functions, J(x, y) = N(x,y)/D(x,y), so using the
quotient rule for differentiation yields

∂J

∂x
=

∂N
∂x D(x, y)− ∂D

∂x N(x, y)

D(x, y)2
(35)

∂J

∂y
=

∂N
∂y D(x, y)− ∂D

∂y N(x, y)

D(x, y)2
.

It is clear that to apply the quotient rule for computing
∇J it is also necessary to compute ∇N = [∂N/∂x ∂N/∂y]

T

and ∇D = [∂D/∂x ∂D/∂y]
T . A useful fact is that since the

numerator function N is continuously differentiable with
respect to x and y, the directional derivative N ′(p;d) of N at
the point p = [x y]T in the direction d = [δx δy]

T is equal
to [12]

N ′(p;d) = ∇N(p)Td. (36)

In the case at hand, ∇N is unknown and the quantity to be
determined, but the directional derivative N ′(p;d) can also be
calculated as the derivative with respect to t of the function
GN (t) = N(p+ td) evaluated at t = 0,

N ′(p;d) =
d

dt
GN (t)

∣∣∣∣
t=0

=
d

dt
N(p+ td)

∣∣∣∣
t=0

. (37)

Thus ∇N can be recovered by using (37) to compute the
directional derivative N ′(p;d) and then writing the result in
a form compatible with (36) to recover the gradient vector.
The same procedure also applies to the denominator function
D(x, y) using the derivative with respect to t of the function
GD(t) = D(p+ td) evaluated at t = 0.

Continuing along this track and starting with D(x, y) yields,

GD(t) = D(x+ tδx, y + tδy) = (38)

= c(x+ tδx, y + tδy)
HQc(x+ tδx, y + tδy)

= c(x, y)Hej(∆x⊕∆y)tQe−j(∆x⊕∆y)tc(x, y)

and the desired directional derivative

D′(p;d) = jc(x, y)H [∆x⊕∆y,Q] c(x, y) (39)

= jtr
(
[∆x⊕∆y,Q] c(x, y)c(x, y)H

)
= jtr

(
[δyTv ⊕ δxTu,Q] c(x, y)c(x, y)H

)
= jtr

(
([δxTu ⊗ I,Q] + [I⊗ δyTv,Q]) c(x, y)c(x, y)H

)
= j

[
tr
(
[δxTu ⊗ I,Q] c(x, y)c(x, y)H

)
+tr

(
[I⊗ δyTv,Q] c(x, y)c(x, y)H

)]
= j

[
δxtr

(
[Tu ⊗ I,Q] c(x, y)c(x, y)H

)
+δytr

(
[I⊗Tv,Q] c(x, y)c(x, y)H

)]

where the notation [A,B] denotes the Lie bracket,
[A,B] = AB−BA. Rewriting (39) in matrix form and
comparing to (36) yields

D′(p;d) = (40)[
−imag

(
tr
(
[Tu ⊗ I,Q] c(x, y)c(x, y)H

))
−imag

(
tr
(
[I⊗Tv,Q] c(x, y)c(x, y)H

))]T [
δx

δy

]
≡ ∇D(p)Td. (41)

Repeating the same argument for the numerator function
N(x, y) results in

N ′(p;d) = (42)[
−imag

(
tr
(
[Tu ⊗ I,W] c(x, y)c(x, y)H

))
−imag

(
tr
(
[I⊗Tv,W] c(x, y)c(x, y)H

))]T [
δx

δy

]
≡ ∇N(p)Td. (43)

Now the components of ∇N and ∇D are clearly available to
substitute into (35) to compute ∇J .

B. Conjugate Gradient Algorithm

The conjugate gradient algorithm for maximizing the cost
function in (27) for the kth array element coordinates
(xk, yk) at the lth iteration of the AP algorithm is

Algorithm 2 Conjugate Gradient Algorithm
Require: Initial array element coordinates x0

k and y0k
1: Set the initial search direction d0 = ∇J(x0

k, y
0
k)

2: Until ∥∇J(xj
k, y

j
k)∥2 ≤ ϵ, where j denotes the conjugate

gradient iteration index, do the following:
3: Determine the step-size µj

4: Set pj+1 = pj + µjdj where pj = [xj
k yjk]

T

5: Set gj+1 = ∇J(xj+1
k , yj+1

k)
6: Set dj+1 = gj+1 + αjdj

7: Set αj =
gT
j+1(gj+1−gj)

gT
j gj

8: Set j = j + 1

The step-size µj for the jth conjugate gradient iteration
can be set equal to a constant value small enough to
ensure algorithm convergence or it can be chosen via a
one-dimensional line search. The preferred approach is to use
Armijo’s rule. Given an initial stepsize, 0 < ρ < 1, Armijo’s
rule chooses the final stepsize µj to be the first value
in the sequence 1, ρ, ρ2, ρ3, . . . that satisfies the condition
J(pj + µjdj) ≥ J(pj) + µjα∇J(pj)

Tdj , for a fixed scalar
0 < α < 0.5. In other words, µj = ρm for some integer m.

C. Computation of Hessian Matrix

Curvature information for the cost function J(x, y) is
contained in the Hessian matrix H(x, y) defined as

∇2J(x, y) ≡ H(x, y) =

 ∂2J(x,y)
∂x2

∂2J(x,y)
∂x∂y

∂2J(x,y)
∂y∂x

∂2J(x,y)
∂y2

 . (44)

It is possible to compute the Hessian matrix H in a manner
similar to the computation of the gradient vector ∇J by

5

using directional derivatives. Since J(p) is a function with
continuous second partial derivatives in any neighborhood of
p = [x y]T , then for any direction d,

d2

dt2
J(p+ td) = dHH(p+ td)d (45)

which implies that

d2

dt2
J(p+ td) |t=0 = dHH(p)d. (46)

Calculating the second order directional derivatives of
J(p+ td) directly is a cumbersome process so a different
approach will be used to compute H(p) based on the Taylor
series expansion of J(p+ d). Using a Taylor series, the
function J(p+ d) can be approximated by,

J(p+ d) ≈ J(p) +∇J(p)Td+
1

2
dT∇2J(p)d+ H.O.T

(47)

= J(p) +
d

dt
J(p+ td)

∣∣∣∣
t=0

+
1

2

d2

dt2
J(p+ td)

∣∣∣∣
t=0

+ H.O.T.

where H.O.T stands for higher order terms in the Taylor series.
So the strategy employed to determine H(p) = ∇2J(p) is to
compute the Taylor series expansion of J(p+ d) and then
collect the second order terms to arrive at a quadratic form
with inner matrix equal to the Hessian.

Recall,

J(p+ td) =
N(p+ td)

D(p+ td)
(48)

where

N(p+ td) = N(x+ tδx, y + tδy) = (49)

= c(x, y)Hej(∆x⊕∆y)tWe−j(∆x⊕∆y)tc(x, y)

D(p+ td) = D(x+ tδx, y + tδy) =

= c(x, y)Hej(∆x⊕∆y)tQe−j(∆x⊕∆y)tc(x, y).

Let ∆ = ∆x⊕∆y and c = c(x, y) to simplify notation. The
terms necessary to compute the Taylor series expansion for
the numerator function out to second order are

N(p+ td)|t=0 = cHWc (50)
d

dt
N(p+ td)

∣∣∣∣
t=0

= jcH [∆,W] c

d2

dt2
N(p+ td)

∣∣∣∣
t=0

= −cH [∆, [∆,W]] c.

Combining terms as in (47) yields

N(p+ d) = cH
[
W + j [∆,W]− 1

2
[∆, [∆,W]] + . . .

]
c.

(51)
Define the function

G(t) =
1

D(p+ td)
=

1

cHej∆tQe−j∆tc
. (52)

The derivatives necessary to compute the Taylor series
expansion for G(t) are

G′(t) = −[D(p+ td)]−2 d

dt
D(p+ td), (53)

G′′(t) = 2[D(p+ td)]−3

[
d

dt
D(p+ td)

]2
− [D(p+ td)]−2 d2

dt2
D(p+ td),

which yields

G′(0) = −j
cH [∆,Q] c

(cHQc)2
, (54)

G′′(0) =
cH [∆, [∆,Q]] c

(cQc)2
− 2(cH [∆,Q] c)2

(cHQc)3
.

After combining terms, the Taylor series expansion of
1/D(p+ d) becomes

1

D(p+ d)
= G(0) +G′(0) +

1

2
G′′(0) + . . . (55)

=
1

cHQc
− j

cH [∆,Q] c

(cHQc)2

− cH [∆, [∆,Q]] c

2(cHQc)2
− (cH [∆,Q] c)2

(cHQc)3
+

Multiplying together the Taylor series expansions for
N(p+ d) and 1/D(p+ d) and collecting second order terms
yields

J(p+ d) =
1

D(p+ d)
·N(p+ d) ≈ (56)

− cH [∆, [∆,W]] c

2(cHQc)
+

1
2 (c

HWc)(cH [∆, [∆,Q]] c) + (cH [∆,W] c)(cH [∆,Q] c)

(cHQc)2

− (cHWc)(cH [∆,Q] c)2

(cHQc)3
+ other terms.

Recall,

∆ = ∆x⊕∆y = δxTu ⊕ δyTv (57)
= ∆x⊗ I+ I⊗∆y = δxTu ⊗ I+ I⊗ δyTv.

6

Substituting (57) into (56) and simplifying produces

J(p+ d) ≈ δ2x

[
−cH [Tu ⊗ I, [Tu ⊗ I,W]] c

2(cHQc)
(58)

− (cHWc)(cH [Tu ⊗ I,Q] c)2

(cHQc)3

+
(cHWc)cH [Tu ⊗ I, [Tu ⊗ I,Q]] c

2(cHQc)2

]
+ δ2y

[
−cH [I⊗Tv, [I⊗Tv,W]] c

2(cHQc)

+
cH [I⊗Tv, [I⊗Tv,Q]] c

(cQc)2

− (cHWc)(cH [I⊗Tv,Q] c)2

(cHQc)3

]
+ δxδy

[
−cH [Tu ⊗ I, [I⊗Tv,W]] c

2(cHQc)

− cH [I⊗Tv, [Tu ⊗ I,W]] c

2(cHQc)

+
cH [Tu ⊗ I, [I⊗Tv,Q]] c

(cQc)2

+
cH [I⊗Tv, [Tu ⊗ I,Q]] c

(cHQc)2

−2(cHWc)cH [Tu ⊗ I,Q] ccH [I⊗Tv,Q] c

(cHQc)3

]
+ other terms.

Equation (58) can be re-written in the form

J(p+ d) ≈ dTH(p)d+ other terms (59)

= [δx δy]
T

[
H11 H12

H21 H22

][
δx

δy

]
+ other terms

where the elements of the desired Hessian matrix H(p) are
given by

H11 =− cH [Tu ⊗ I, [Tu ⊗ I,W]] c

cHQc
(60)

− 2(cHWc)(cH [Tu ⊗ I,Q] c)2

(cHQc)3

+
(cHWc)cH [Tu ⊗ I, [Tu ⊗ I,Q]] c

(cHQc)2
,

H12 =− cH [Tu ⊗ I, [I⊗Tv,W]] c

cHQc
(61)

+
2cH [Tu ⊗ I, [I⊗Tv,Q]] c

(cHQc)2

− 2(cHWc)cH [Tu ⊗ I,Q] ccH [I⊗Tv,Q] c

(cHQc)3
,

H21 =− cH [I⊗Tv, [Tu ⊗ I,W]] c

cHQc
(62)

+
2cH [I⊗Tv, [Tu ⊗ I,Q]] c

(cHQc)2

− 2(cHWc)cH [Tu ⊗ I,Q] ccH [I⊗Tv,Q] c

(cHQc)3
,

H22 =− cH [I⊗Tv, [I⊗Tv,W]] c

cHQc
(63)

+
2cH [I⊗Tv, [I⊗Tv,Q]] c

(cHQc)2

− 2(cHWc)(cH [I⊗Tv,Q] c)2

(cHQc)3
.

D. Newton’s Method
Using the derived Hessian matrix, Newton’s method

for solving the optimization program in (27) becomes

Algorithm 3 Newton’s Method
Require: kth array element initial positions x0 and y0

1: Set the initial search direction
d0 = H(x0, y0)

−1∇J(x0, x0)
2: Until ∥∇J(xj , yj)∥2 ≤ ϵ, where j denotes iteration index,

do the following:
3: Determine the step-size µj using a line-search method or

set µj = 1 for all j
4: Set pj+1 = pj + µjdj where pj = [xj yj]

T

5: Set gj+1 = ∇J(xj+1, yj+1)
6: Set dj+1 = H(xj+1, yj+1)

−1gj+1

7: Set j = j + 1
8: Repeat steps 1-7 for all array elements

IV. PART B. OPTIMAL ADAPTIVE BEAMFORMER

In this section, we derive a beamformer solution that can be
used to solve for complex weights to be applied to the sparse
array elements in their new optimized locations to further
reduce beampattern sidelobe levels. Consider the MSE cost
function

min
w

∥wHA− f∥2 (64)

= wHAAHw −wHAfH − fAHw + ffH

=
[
1 wH

] [ffH −fAH

−AfH AAH

][
1

w

]

≡
[
1 wH

]
K

[
1

w

]
.

The 1-by-L vector f consists of complex filled array
beampattern samples from the sidelobe region. The matrix A
is the M -by-L manifold matrix corresponding to the sparse
array whereby each column corresponds to a steering vector
for a specified direction.

Applying a unity gain constraint on the mainbeam yields

min
w

[
1 wH

]
K

[
1

w

]
(65)

such that wHa = 1,

7

where a is the steering vector corresponding to the desired
mainbeam pointing direction. The linear constraint wHa = 1
can be rewritten as,[

1 0T

0 aH

][
1

w

]
=

[
1

1

]
(66)

≡ Cŵ = b.

The well-known global solution to the quadratic optimization
program,

min
ŵ

ŵHKŵ (67)

such that Cŵ = b

is given by

ŵ = K−1CH(CK−1CH)−1b. (68)

V. NUMERICAL RESULTS

This section describes simulated results that demonstrate the
effectiveness of the proposed algorithm. We consider a sparse
lattice with 81 spatial samples spaced at intervals 2λ apart on
a 9-by-9 grid. Our goal is to reduce the sparse array grating
lobes by at least 13 dB relative to the peak so as to be no
worse than the sidelobes of a uniformly weighted filled array
that has the same length and width dimensions as the sparse
array.

The alternating projections algorithm proceeds by sampling
the filled-array beampattern which also has a complex taper
applied to reduce the ambient sidelobe level as shown in Fig. 1.
Fig. 2 illustrates the trajectory of array element 1 as it moves
across the xy-plane of the aperture according to the conjugate
gradient iterations of the algorithm. Fig. 3 shows the final
optimized array element locations after 16 passes through the
entire array where each pass optimizes one element at a time.
Fig. 4 illustrates the final beampattern at 40 GHz after the
array element locations have been optimized and the adaptive
beamformer described in Section IV has been applied. Fig. 5
illustrates a U-cut of the optimized beampattern and shows a
reduction in grating lobe power by 14 dB relative to the peak
of the mainbeam. Likewise, there is a reduction in grating lobe
power by 12.9 dB in the V-principal plane.

A. Experimental Validation

In this section, we show the results of deploying the
proposed approach in hybrid chamber measurements where
a synthetic aperture is used in the setup detailed in [13]. In
Fig. 6, we plot the measured grating lobes in the received
power pattern with spatial aliasing due to the use of a 9-by-9
uniform sparse array. Note that the mainbeam and the grating
lobes are wider than theoretical due to the impact of the
measurement setup. Similarly, we also show the measured
received power pattern of a 35-by-35 filled array in Fig. 6.
The measured data in this case are post-processed using the
same taper as in the simulated case to reduce the sidelobe
levels. Finally, the optimized sparse array is used to get the
received power pattern in Fig. 7 which validates the theoretical
numerical results.

Fig. 1: Received power pattern of the filled array

Fig. 2: Position trajectory of array element 1

VI. CONCLUSIONS

This paper derives a novel gradient implementation of
an alternating projections algorithm followed by an adaptive
beamformer. First, the AP algorithm optimizes the location
of spatial samples in a sparse array lattice to mitigate the
peak level of grating lobes. Then, the adaptive beamformer
calculates an aperture taper that further reduces the overall
sidelobe level. Simulation results show peak grating lobes in
the optimized beampattern that are 14 and 12.9 dB below the

Fig. 3: Optimized sparse array lattice

8

Fig. 4: Simulated received power pattern of the optimized
sparse array

Fig. 5: U-cut of optimized sparse-array beampattern

mainbeam peak in the azimuth and elevation principal planes
respectively.

DISCLAIMER

Certain commercial equipment, instruments, or materials are
identified in this paper in order to specify the experimental
procedure adequately. Such identification is not intended
to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to
imply that the materials or equipment identified are necessarily
the best available for the purpose.

REFERENCES

[1] S. Kirkpatrick, C. D. G. Jr., and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, pp. 671–680, May 1983.

[2] V. Murino, A. Trucco, and C. S. Regazzoni, “Synthesis of unequally
spaced arrays by simulated annealing,” IEEE Trans. Sig. Proc., vol. 44,
pp. 119–123, Jan. 1996.

[3] J. F. Hopperstad, Optimization of Thinned Arrays. University of Oslo
Master’s Thesis, 1998.

[4] A. Trucco and F. Repetto, “A stochastic approach to optimising
the aperture and the number of elements of an aperiodic array,” in
Proceedings OCEANS ‘96, vol. 3, 1996, pp. 1510–1515.

[5] A. Trucco, “Synthesis of aperiodic planar arrays by a stochastic
approach,” in Proceedings OCEANS ‘97, 1997.

[6] J. H. Holland, “Genetic algorithms,” Scientific American, pp. 66–72, July
1992.

Fig. 6: Measured received power patterns of the sparse (top)
and filled (bottom) arrays at 40 GHz

Fig. 7: Measured received power pattern of the optimized
sparse array

[7] D. E. Goldberg, Genetic Algorithms. Addison-Wesley, 1989.
[8] R. L. Haupt, “Thinned arrays using genetic algorithms,” IEEE Trans.

Ant. Prop., vol. 42, pp. 993–999, July 1994.
[9] P. Weber, R. Schmitt, B. D. Tylkowski, and J. Steck, “Optimization of

random sparse 2-d transducer arrays for 3-d electronic beam steering
and focusing,” in Proceedings of IEEE Ultrasonics Symposium, vol. 3,
1994, pp. 1503–1506.

[10] D. O’Neill, “Element placement in thinned arrays using genetic
algorithms,” in Proceedings OCEANS ‘94, vol. 2, 1994, pp. 301–306.

[11] S. T. Smith, “Optimum phase-only adaptive nulling,” IEEE Trans. Sig.
Proc., vol. 47, no. 7, pp. 1835–1843, July 1999.

[12] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1995.
[13] P. Vouras, K. V. Mishra, A. Artusio-Glimpse, S. Pinilla, A. Xenaki,

D. W. Griffith, and K. Egiazarian, “An overview of advances in signal
processing techniques for classical and quantum wideband synthetic
apertures,” 2022. [Online]. Available: https://arxiv.org/abs/2205.05602

